
## **SC5H-I3/S**

M18x1,5 • Q<sub>max</sub> 30 l/min (8 GPM) • p<sub>max</sub> 350 bar (5100 PSI)



### **Technical Features**

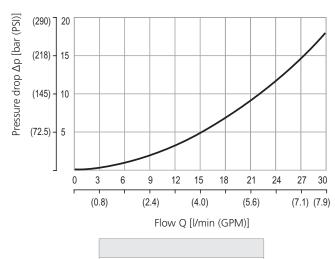
- > Hardened and precision working parts
- > Sharp-edged ground steel seats for dirt-tolerant performance
- Leak-free closing and suitable for fast cycling with long life
- > High flow capacity
- > Optional sealed piston and bias spring ranges for back-pressure control
- In the standard version, the valve is zinc-coated for 240 h protection acc. to ISO 9227. Enhanced surface protection for mobile sector available for the steel parts (ISO 9227, 520 h salt spray)

### **Functional Description**

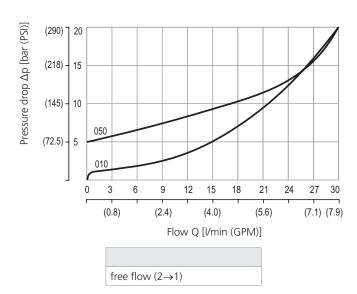
The valve allows flow to pass from port 2 to 1 while normally closing flow from 1 to 2 with load. When pressure is applied at port 3. The flow passes from port 1 to 2.

The cartridge valve has a 4:1 pilot ratio. This require minimum one-third of the load pressure applied at port 3 to open the valve. The check valve is also spring closed to secure holding position in static conditions without the load.



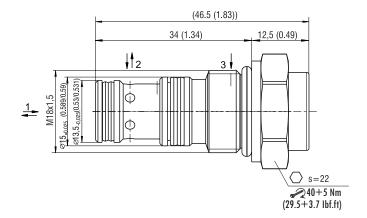

## **Technical Data**

| Valve size / Cartridge cavity |             | M18x1,5 / I3        |
|-------------------------------|-------------|---------------------|
| Max. flow                     | l/min (GPM) | 30 (7.9)            |
| Max. operating pressure       | bar (PSI)   | 350 (5080)          |
| Pilot ratio                   |             | 4:1                 |
| Fluid temperature range (NBR) | °C (°F)     | -30 +100 (-22 +212) |
| Fluid temperature range (FPM) | °C (°F)     | -20 +120 (-4 +248)  |
| Weight                        | kg (lbs)    | 0,65 (1.43)         |

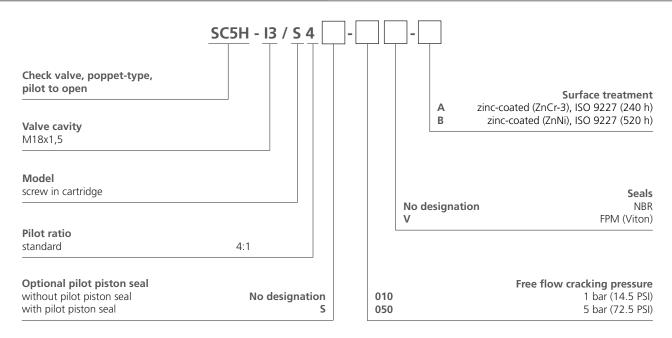

|                     | Datasheet | Туре                              |
|---------------------|-----------|-----------------------------------|
| General information | GI_0060   | Products and operating conditions |
| Cavity details      | SMT_0019  | SMT-I3*                           |
| Spare parts         | SP_8010   |                                   |

## **Characteristics** measured at $v = 40 \text{ mm}^2/\text{s}$ (195 SUS)

### Pressure drop related to flow rate




pilot open  $(1\rightarrow 2)$ 




Page 1 www.argo-hytos.com





# **Ordering Code**



www.argo-hytos.com Page 2